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Motivation
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Graph Neural Networks

« Graph neural networks (GNNs) have been widely applied
to web-based applications.
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Social influence prediction Recommendation system

* Neighborhood expansion in GNNs
« Leads to exciting performance ® @
. Requires to gather information ®

Figures from internet
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Neural Message Passing

* Traditional GNN designs (e.g., GCN[1], GAT[2]) follow the
neural message passing (NMP) paradigm:

* Aggregate the neighborhood information (Communication)
m) « aggregate ({hf,'llu € NU})
* Update the message via neural networks (Computation)

h! « update(m)

* Drawback: Frequently fetch information from other machines -
High communication cost during each epoch on large datasets
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GIF from https://blog.csdn.net/DreamHome_S/article/details/105619194 S

[1] Thomas N Kipf and Max Welling. 2017. Semi-Supervised Classification with Graph Convolutional Networks. In ICLR.
[2] Petar Veli¢kovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lid, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.
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GNN Systems

* Most GNN systems adopt the NMP paradigm.

DEEP Py —
DGl & PyG

DGL[1] PyG[2]

* Challenges for web-scale graphs

_____________________

Manual Design

Designing task-specific GNNs High

i Low The NMP paradigm leads to high
require expert knowledge. Barrier

Scalability training/inference time.

[1] https://github.com/dmic/dgl
[2] https://github.com/pyg-team/pytorch_geometric 6
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Bottlenecks

* Scalability issue
* The speedup decreases when using more workers.
* The communication costs dominate the training process.
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* Motivation: Can we propose a novel GNN system to support
simple and scalable graph learning for large graphs?
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Method
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Method Overview N

* Input: Graph dataset + Optimization objectives

* OQutput: Scalable GNNs that tackle the tradeoff between
objectives well

e End-to-end without further interaction

2) Objectives Scalable GNNs
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Method Outline

- Scalable paradigm (SGAP)
« Abstraction to define a scalable training process

* Auto-search system (PaSca)

Scalable Paradigm

Unscalable Design
Pre-processing
(Aggregating)

Aggregating

Model Training
(Updating)

Updating

Post-processing
(Aggregating)

Fetch information during training

1 Fetch information before and after training
The number of training epochs l
Twice
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SGAP Abstraction

* Pre-processing
« Aggregate messages (features) from neighbors

* Post-processing
* Aggregate messages (soft predictions) from neighbors

m. < graph_aggregator ({m,ﬂ‘llu € Nv})

Scalable Paradigm °

Pre-processing
(Aggregating)

Post-processing
(Aggregating)

Input Graph Graph

Aggregators
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Graph Aggregator

- Abstraction  m; « graph_aggregator ({mffllu € N»a})

« Augmented normalized adjacency (used in GCN[1])

1
T E : t—1
m,a = Zmu

ueNy
* Personalized PageRank (used in APPNP[2])
m) = am? + (1 - a) Z . m’ !

o N —— u
ueNy +/dyd,,

« Triangle-induced adjacency (used MotifNet[3])

1
t _ t—1
m, = E Jiri m,,

HENU o

[1] Thomas N Kipf and Max Welling. 2017. Semi-Supervised Classification with Graph Convolutional Networks. In ICLR.

[2] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Giinnemann. 2019. Predict then Propagate: Graph Neural Networks meet
Personalized PageRank. In ICLR.
[3] Federico Monti, Karl Otness, and Michael M Bronstein. 2018. Motifnet: a motif-based graph convolutional network for directed graphs. In 2018

IEEE Data Science Workshop (DSW). IEEE, 225-228.
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SGAP Abstraction K\

=
* Training
« Aggregate the messages from the pre-processing stage

« Update the combined message via dense layers

cy < message_aggregator(My)
Scalable Paradigm
15t-step 2" step 3"d-step Kth-step

mv mv m‘l?;

Model Training F

(Updating)

Cy

h, <« message_updater(cy)
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Message Aggregator

 Abstraction c, < message_aggregator(My)
* Non-adaptive aggregator (mean, max)

Cmsg < ®picp, w; f(m})

- Adaptive aggregator (gate with trainable parameters)

i i
Cmsg < E w;m,, w; = o(sm,)

i
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We should assign messages with different weights for different nodes!
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Method Outline K\

Search Engine

- Scalable paradigm (SGAP)

* Auto-search system (PaSca)

 Two components
* (Automatic) search engine

[ Design Space J

» (Distributed) evaluation engine {Suggestion Server]
 The search engine suggests an = « - - —— |4 - —— - —
configuration instance. 1) Sample 2) Update
i _ architectures observations
« The evaluation engine evaluates
the configuration instance. [ Evaluation Engine ]
Searching
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Search Engine

+ Tackle tradeoff between different objectives

» Design space: Choices of inner design (parameter) in
three SGAP stages

Inner Design
Scalable Paradigm = = = = = = = = = = - m e e e

Pre-processing

\leseee Aepeee i - Which aggregator to use?
(Aggregating)

Dense Layer

(Updating)
How many dense layers to use?

Post-processing
(Aggregating)

Dense Layer

I
I
I
I
I
I
I
Model Training I
I
I
I
I
I
I
I
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Design Space N

* 6 parameters to choose + 2 parameters for each stage
* Over 150k possible configuration instances

Stages Name Range/Choices Type
Pre-processing Aggregation steps (Kpre) [0, 10] . Intege‘r
Graph aggregators (GApre)  {Aug.NA, PPR(« = 0.1), PPR(a = 0.2), PPR(a = 0.3), Triangle. IA} ~Categorical
Model training Message aggregators (MA) {None, Mean, Max, Concatenate, Weighted, Adaptive} Categorical
Transformation steps (Ktrans) [1, 10] Integer
Aggregation steps (Kpost) [0, 10] Integer

Post-processing Graph aggregators (GApos:)  {Aug.NA, PPR(a = 0.1), PPR(a = 0.2), PPR(a = 0.3), Triangle. IA}  Categorical

* The space also contains recent scalable architecture designs.

Models Pre-processing Model training Post-processing
GApre MA Ktmns GApost
SGC Aug NA None 1 /
SIGN Optional Concatenate 1 /
S2GC PPR Mean 1 /
GBP Aug NA Weighted > 2 /
PASca-APPNP / / > 2 PPR
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Suggestion Server

\\
Model the relationship between e o
: : : [ Search Engine I
Instances and objective values ! :
: [ Design Space ] :
. . I I
Suggest the instance that is ! | !
expected to tackle the tradeoff well ! [SUggesﬁon Serve,J |
I I
. . 1) Sample 2) Update
Update the history with observed a,chitectures} Lbsewaﬁons
performance
[ Evaluation Engine ]
Searching
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Evaluation Engine N

Maessage Distributed Storage =

1 0O-th1-th i-th
0-th1th i-th : EE B
* Graph data aggregator .{' NN -tI EE B
. HE N HE N
* Partition large graphs Structure  Features | Structure  Features

1) i-step messages of J IZ)[i+1)—step message

node v's neighborhood of node v

e Compute the (i+1)t-step
messages after all ith-step | Worker1 | worker2 |- [ workern |
messages are ready

Pre-processing Features

Synchronized Parameters
* Neural architecture trainer @ ° @
¢ M'ﬂl‘batCh tralnlng lWorkerIJ[Workerz ’---[WorkerN]

-~
Sample mini-batchs

 Asynchronous training via a Message D‘“’,‘b“a‘_ﬁ“l:‘:ﬁ";ig%_m\
parameter server wnn s SEE-E-
EEs m B R B
Features : Features /
Training
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Experiment
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Settings

* Dataset
Dataset #Nodes  #Features  #Edges  #Classes #Train/Val/Test Task type Description
Cora 2,708 1,433 5,429 7 140/500/1000 Transductive citation network
Citeseer 3,327 3,703 4,732 6 120/500/1000 Transductive citation network
Pubmed 19,717 500 44 338 3 60/500/1000 Transductive citation network
Amazon Computer 13,381 767 245,778 10 200/300/12881 Transductive co-purchase graph
Amazon Photo 7,487 745 119,043 8 160/240/7,087 Transductive co-purchase graph
ogbn-products 2,449,029 100 61,859,140 47 195922/489811/204126  Transductive co-purchase network
Coauthor CS 18,333 6.805 81,894 15 300/450/17,583 Transductive  co-authorship graph
Coauthor Physics 34,493 8,415 247,962 5 100/150/34,243 Transductive  co-authorship graph
Flickr 89,250 500 899,756 7 44.625/22,312/22,312 Inductive image network
Reddit 232,965 602 11,606,919 41 155,310/23,297/54,358 Inductive social network
Industry 1,000,000 64 1,434,382 253 5,000/10,000/30,000 Transductive user-video graph

* Insights

* SGAP is more scalable than other paradigms.
e The search results of PaSca can tackle the tradeoff between

different objectives well.

* The search results achieve higher predictive performance.
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Scalability Analysis .

* Baseline
* SGAP: APPNP under SGAP with PaSca evaluation engine
* NMP: GraphSAGE with DistDGL

* The SGAP architecture achieves a near-linear speedup and is
closer to the ideal speedup.

4 4
—o— Ideal —o— Ideal
PASca-APPNP PASca-APPNP
% 34 —— GraphSAGE % 31 —— GraphSAGE
5 g
b E
A 21 a2
19 , 11
2 4 6 8 2 4 6 8
#Workers #Workers
Reddit (>230K nodes) ogbn-product (>2.4M nodes)
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Normalized inference Time
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Search Representatives

Representatives (on the Pareto Front)

p

i

* Searched instances from SGAP design space that tackle the trade-off well

* PaSca-V3 achieves lower predictive error but requires longer inference

time than PaSca-V2.

Our search results also include GBPJ[1], a SOTA scalable design.

Table 3: Scalable GNNs found by PaSca.

Pre-processing Model training

Post-processing

PASCA-V3
PASCA-V2
GBP SIGN
A
SZGACPASCA—APPNP SGAC
PASCA-V1
e Ll T
0.15 0.16 0.17 0.18 0.19

Classification Error

[1]Chen M, Wei Z, Ding B, et al. 2020. Scalable graph neural networks via bidirectional propagation[J]. In NeurlPS.

Model
ode’s GApre MA Kpre Ktrans GApost Kpost
PaSca-V1 | PPR(x = 0.1) Weighted 3 2 / /
PASca-V2 Aug NA Adaptive 6 2 / /
PaSca-V3 Aug NA Adaptive 6 3 PPR (a = 0.3) 4
23
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Search Representatives

* The search results tackle the tradeoff well.

* PaSca V2 and V3 achieve better accuracy than the SOTA JK-
Net and require significantly short training time.

49
PASca-SGAP
- o b [r——
~ 481 !
2 !
~ | JK-Net
S ! q& 113x
< . i AP-GC AT
g . EP Sca-V1 i = = SQ’EX
- ASCA- SIGN * -
g C o Ix 5 : APPNP RSN
< : % | GCN  78x
|- ' 33
g 1K i y
= s i
45 1 M E
L e e e e — Jd
10° 10" 107

Relative Training Time

[1] Xu K, Li C, Tian Y, et al. 2018. Representation learning on graphs with jumping knowledge networks. In ICML.
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Predictive Performance

SGAP architectures achieve competitive results compared with
unscalable paradigms.

PaSca-V3 achieves the best test results across different datasets.

Amazon

Amazon Coauthor

Coauthor

Type  Models Cora Citeseer PubMed Computer  Photo CS Physics Industry
GCN 81.8+0.5 70.8+0.5 79.3+0.7 82.4+0.4 91.240.6  90.7+0.2 92.7+1.1 45.9+0.4
NMP GAT 83.0+0.7 72.5+0.7 79.0+0.3 80.1+0.6 90.8+1.0 87.4+0.2 90.2+1.4 46.8+0.7
JK-Net 81.8+0.5 70.7+0.7  78.8%+0.7 82.0+0.6 91.9+0.7 89.5+0.6 92.5+0.4 47.2+0.3
ResGCN  82.2+0.6 70.8+0.7 78.3+0.6 81.1+0.7 91.3+0.9 87.9+0.6 92.2+1.5 46.8+0.5
DNMP APPNP  83.3+0.5 71.8+0.5 80.1+0.2 81.7+0.3 91.4+03  92.1+0.4 92.8+0.9  46.7+0.6
AP-GCN  83.4+03 71.3+0.5 79.7+0.3 83.7+0.6 92.1+0.3 91.6+0.7 93.1+0.9 46.9+0.7
SGC 81.0+0.2 71.3+0.5 78.9+0.5 82.2+0.9 91.6+0.7  90.3+0.5 91.7+1.1 45.2+0.3
SIGN 82.1£0.3 72.4+0.8 79.5+0.5 83.1+0.8 91.7£0.7  91.9+0.3 92.8+0.8  46.3+0.5
S2GC 82.7£0.3 73.0+£0.2  79.9+0.3 83.1+0.7 91.6+0.6 91.6x0.6 93.1+0.8 45.9+0.4
SGAP GBP 83.9+0.7 72.9+0.5 80.6+0.4 83.5+0.8 92.1+0.8 92.3+0.4 93.3+0.7 47.1+0.6
PASca-V1 83.4+0.5 72.2+0.5 80.5+0.4 83.7+0.7 92.1£0.7  91.9+0.3 93.2+0.6  46.3+0.4
PASca-V2  84.4+03 73.1+0.3  80.7+0.7 84.1+0.7 92.4+0.7  92.6+0.4 93.6+0.8  47.4+0.6
PASca-V3 84.6+0.6 73.4+0.5 80.8+0.6 84.8+0.7 92.7+0.8 92.8+0.5 93.8+0.9 47.6+0.3
THE
conrerince = 25-29 April 2022 | Lyon, France

25



Conclusion
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Conclusion

* We present PaSca, a novel auto-search system to construct and
explore scalable GNNs, rather than studying individual designs.

° Representative architectures from PaSca outperforms SOTA
GNNs in terms of predictive performance, efficiency, and
scalability.

° PaSca can help researchers explore design space for scalable
GNNs and understand different design choices.

* The code is available at https://github.com/PKU-DAIR/SGL.
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Thanks for listening

Q&A
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